Available online at www.sciencedirect.com

® JOURNAL OF
sc'““@m“” COMPUTATIONAL
< PHYSICS
ELSEVIER Journal of Computational Physics 193 (2003) 306-316

www.elsevier.com/locate/jcp

Event-driven molecular dynamics in parallel

S. Miller **, S. Luding *°

& Institut fiir Computeranwendnungen 1, Universitat Stuttgart, Pfaffenwaldring 27, Stuttgart D-70569, Germany
® particle Technology, DelftChemTech, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

Received 3 February 2003; received in revised form 5 August 2003; accepted 25 August 2003

Abstract

Although event-driven algorithms have been shown to be far more efficient than time-driven methods such as
conventional molecular dynamics, they have not become as popular. The main obstacle seems to be the difficulty of
parallelizing event-driven molecular dynamics. Several basic ideas have been discussed in recent years, but to our
knowledge no complete implementation has been published yet. In this paper we present a parallel event-driven al-
gorithm including dynamic load-balancing, which can be easily implemented on any computer architecture. To simplify
matters our explanations refer to a basic multi-particle system of hard spheres, but can be extended easily to a wide
variety of possible models.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Event-driven molecular dynamics is an effective algorithm for the simulation of many-component sys-
tems, which evolve independently, except for discrete asynchronous instantaneous interactions. As an
example we will discuss a system consisting of N hard spheres in a box with periodic boundary conditions,
but the algorithm can be extended to particles with different shapes and interacting via any piecewise
constant potential or to completely different problems as well [1].

Event-driven molecular dynamics processes a series of events asynchronously one after another. A
straightforward but simplistic approach [2] updates all particles at each event; many advanced versions are
available in textbooks [3,4]. We base our algorithm on the sophisticated algorithm as presented by [5],
which updates only those particles involved in an event. It has been successfully applied to many different
problems, among them granular gases [6,7], polymer chains [8], tethered membranes [7,9], protein folding
[10], and battlefield models [11].

In many physical systems the duration of the interaction of the components, e.g., the collision of two
particles, is negligible compared to the time between these interactions. The simulation of such systems with

* Corresponding author. Fax: +49-711-685-3658.
E-mail addresses: stefan.miller@ical.uni-stuttgart.de (S. Miller), S.Luding@tnw.tudelft.nl (S. Luding).

0021-9991/$ - see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.jcp.2003.08.009

mail to: stefan.miller@ica1.uni-stuttgart.de

S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316 307

traditional time-driven molecular dynamics is highly inefficient. Instead, it is straightforward to consider
the interactions as instantaneous events and solve the problem with an event-driven algorithm.

One reason why event-driven molecular dynamics has not become as popular as conventional time-
driven molecular dynamics is the fact that parallelization is extremely complicated. The paradoxical task is
to algorithmically parallelize physically non-parallel dynamics. Nevertheless some ideas and basic con-
siderations about the parallelization have been proposed in [12]. They are especially suited for shared
memory computers, but can be transferred to distributed memory architectures as well [13]. Apart from
those ideas no full and general implementation of a parallelized algorithm including load-balancing has
been published yet, to our knowledge. In this paper we present an algorithm, which is based on those ideas,
but is enhanced and completed at several points. It can be implemented with generic tools such as MPI, and
therefore it is suited for shared and distributed memory architectures alike.

In Section 2 we explain the details of the implementation of event-driven molecular dynamics. The
parallelization of the algorithm is presented in Section 3 and a summary is given in Section 4.

2. Event-driven molecular dynamics

Section 2.1 gives an outline of the main routine of the algorithm, which is composed of four steps (see
Fig. 1). Then the most important data structures are introduced in Section 2.2 and hereby steps 1 and 4 are
treated. Steps 2 and 3 are discussed in Sections 2.3 and 2.4, respectively. Finally, Section 2.5 deals with
performance issues.

2.1. Outline

Event-driven molecular dynamics processes a series of discrete events. In a system of hard spheres, events
typically refer to instantaneous collisions, involving exactly two particles. Only these two particles are
processed; the state of the other particles remains unchanged. So the state information of most particles
refers not to the current time, but to a different point of time in the past.

Event processing includes a state update for the concerned particles (see Section 2.3) and the calculation
of the next future events for those particles (see Section 2.4). An outline of the algorithm can be seen in Fig. 1.

The serial algorithm only adds to this event processing loop an initialization step at the beginning and
periodic data output. The parallel algorithm needs several additional routines, which are described in
Section 3.

2.2. Data organization

The algorithm maintains two data fields, particle states and event list, which contain exactly one entry
per particle (see Fig. 2). The former refers to the past of a particle, the latter to its future
(~Vi : state time #,(i) < current time < event time /e, (7)).

event processing loop:

(1) get next event from priority queue — current time

(2) update states of both particles to current time

(3) calculate new future events for both particles

(4) schedule next event for both particles in priority queue
(5)

5) goto 1

Fig. 1. Outline of the main routine of the algorithm.

308 S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316

particle states : Nx {to,r(to), v(t), - .., counter, cell,id}
event list : Nx {tev, type, partner, counter(partner) }

Fig. 2. Data structures for N particles.

A particle state consists of the physical state of a particle, such as position, velocity, etc. immediately
after the most recently processed event of that particle, the point of time of that event, an event counter (see
Section 2.3), a cell number (see Section 2.4), and a global particle number, which is needed to identify
particles on different processes (see Section 3).

The event list associates with every particle an event in the future. The data units of the event list consist
of event time, event type, event partner, and a copy of the event counter of the partner.

All the events are scheduled in a priority queue which is usually implemented as an implicit heap tree
[5,12,14], but other data structures with similar characteristics are possible, too [14,15]. A heap tree is a
binary tree with the following ordering rule: Each parental node has higher priority than its children; the
children themselves are not ordered. So the root node always has highest priority, i.e., the earliest event
time. To get the next event from the priority queue takes computational costs of ¢’(1). Insertion of a new
event in the priority queue is done with costs of ¢(logN).

This data organization is more efficient compared to the algorithm in [5,12], since no double buffering is
needed here, however, the basic ideas of [5,12] are still valid.

2.3. State update

When a collision between two particles is processed, the states of these particles are updated from a point
of time in the past to the current simulation time. First, the positions and velocities of the particles im-
mediately before the collision can be derived by inserting the old state in the equation of motion. As a result
of this first step the particles are touching each other. Then the interaction between the particles takes place
and yields new particle velocities. Now, the event counter is increased, the state time is updated to the
current simulation time, and the values of the positions and velocities immediately after the collision are
stored in the state array.

A typical collision rule for hard spheres [16,17] looks like

+r

(R (v — vz)>R,

where primes indicate the velocities v after the collision, k is a unit vector pointing along the line of centers
from particle 1 to particle 2, and r denotes the restitution coefficient. For the performance tests in the
subsequent chapters we have used the simplest case without dissipation (» = 1). '

If the event partner has undergone collisions with other particles between the scheduling and the pro-
cessing of the event, it becomes invalid. Validity of event partners can be checked by comparing the event
counter of the partner to the copy in the event list. If they do not match, the partner collided with other
particles in the meantime, and the scheduled collision is no longer valid. Then event processing only refers
to one particle and the state update described above only consists of the particle motion; no collision is
performed. After that the algorithm continues in the normal way, i.e., the next event for the particle will be
calculated and scheduled in the priority queue.

Note that the algorithm in [5,12] uses a different strategy to detect invalid event partners: The algorithm
checks at each collision if an event partner becomes invalid and if so marks this partner. This strategy is less

V,1/2 =VinF

! Soft spheres can be approximated via particles consisting of concentric shells with piecewise constant interaction potentials.

S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316 309

efficient, because sometimes the same partner is invalidated several times. Besides, in the parallel algorithm
additional communication between different processes might be necessary.

2.4. Event calculation and linked cell structure

When an event has been processed, new events for the particles involved in that event have to be cal-
culated. In simulations of hard spheres this means the calculation of possible future collisions. If the
particles move on ballistic trajectories

r,(t) = 1i(to) 4 vi(t0) (¢ — t0) +3g(1 — t)’,

two particles 1 and 2 will collide at time #,:

ty =t + (=T Vi — \/(1'12 i)t — (rf, — (R +R2)2)Uf2) /U%27

where vi; = v2(%) — vi (%) and rj; = ra(#) — r1(fy) are the relative velocities and positions of the particles at
time ¢, and R; the radii of the particles. If ¢/, is imaginary or smaller than #,, the particles will not collide.

If the algorithm would have to check for collisions with all other particles, performance would be very
poor for large numbers N of particles. So we divide simulation space in C cells with equal sides. Each
particle belongs to the cell in which its center lies. If the cell size is larger than the maximal interaction
length of the particles, i.e., the particle diameter in the case of hard spheres, event calculation has to check
for possible collisions of two particles only if they belong to the same cell or if their cells are neighbors. (One
square cell has eight neighbors in 2D and a cube has 26 neighbors in 3D.)

However, the algorithm has to keep track of cell changes. So additional events, namely cell changes,
come into play. They are treated just in the same way as the collision events; only the collision partner is the
boundary of a cell. The difference with a collision event is that only one particle is involved in a cell change
and the velocity of the particle does not change at event time. Cell changes at the boundary of the simu-
lation space require that the position vector jumps to the opposite side of the simulation volume due to the
periodic boundary conditions.

2.5. Optimal cell numbers

On average there are 3 N/C — 1 particles in the neighborhood of each particle. So in the limit C < N,
this number becomes very large and many possible events have to be calculated after each collision. On the
other hand, if C > N, then each particle has to cross many cell boundaries between a collision of two
particles, and thus more events have to be treated to complete the simulation. These two contributions
compete with each other, the first one is proportional to (C/N)71 and the second one is proportional to
(C/N)l/ P Fig. 3 (left) shows a broad minimum of the simulation time for low densities at the optimal cell
number C/N ~ 1.5 in 2D and C/N = 8 in 3D. So the program can choose an optimal cell number before
the calculation starts. Note that in the high density limit, especially in 3D, the optimal cell number cannot
be reached, because the size of the cells has to be larger than the particle diameter (see Fig. 3 (right)). So, in
this case C should simply be chosen as big as possible.

3. The parallel algorithm

In Section 3.1 we demonstrate how parallelization can be achieved via domain decomposition and
dynamic load-balancing. Then, in Section 3.2 we point out the difficulties that arise in parallelizing this

310 S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316

— B
T 100 b %]
10 [x T) \x\
\ \\\X
p} po}
'R o
L x L
/ 10 L N
1 1 1 1
0.01 10 100 1000 0.01 0.1 1
CIN C/IN

Fig. 3. Simulation time fcpy (arbitrary units) plotted against the number C of cells in 2D and 3D with the serial algorithm. Used are
N =10,000 particles (2D) and N = 8000 particles (3D). The left figure shows low densities (volume fraction v = 0.008 (2D) and
v = 0.0005 (3D)), the right figure shows high densities (v = 0.8 (2D) and v = 0.5 (3D)).

algorithm and the necessity of state saving and error recovery (see Section 3.3). In Section 3.4 the parallel
algorithm is explained in detail. Finally, some performance issues are discussed in Section 3.5.

3.1. Domain decomposition and dynamic load-balancing

Parallelization is achieved via domain decomposition. Each cell is affiliated with a process, but this
affiliation can change during the simulation if the load of the processes has to be rebalanced.

In order to realize maximal performance, the computational load should be distributed equally among
the processes. If inhomogenities exist from the very beginning or emerge during the simulation, dynamic
load-balancing becomes important. A typical example is cluster formation in granular gases [6,18].

Domain decomposition should thus take into account the following points: First, the load of the pro-
cesses should be distributed homogeneously. Second, in order to minimize process communication, the
border area of each process domain should be as small as possible, which implies that the ideal process
domains are squares or cubes. Third, a simple and fast function that assigns a cell to a process and vice
versa is required.

We meet these demands in the following way: Cell numbers are assigned to cell coordinates in a tree-like
structure, see a small 2D-example in Fig. 4. (Note that a realistic example has thousands or millions of
cells.) These cell numbers are obtained by interleaving all the bits 1 to £ of the cell coordinates:
z[k], y[k], x[k], . .., z[1], y[1],x[1]. The result is a cell number in the range 0 to 2*? — 1. (For convenience these
numbers are increased by one in Fig. 4.) 2

Then, a block of 2" consecutive cell numbers is affiliated with each process, where n can be different for
each process. Suppose the cells 1-16 in Fig. 4 should be distributed over four processes. If a lot of particles
are aggregated in the lower right corner, load-balancing could result in the following layout: Process I
is affiliated with cells 1-8, process II with cells 9-12, process III with cells 13-14, and process IV with cells
15-16.

Every now and then the load of the processes has to be checked. A reasonable and simple measure of the
load is the number of particles or the number of collisions in the process domain. If a restructuring of the

2 An example: The bottom left cell in Fig. 4 with the coordinates 0/3 (bit pattern 000/011) has the number corresponding to the bit
pattern 001010, i.e.,10. Incrementation by one yields the cell number 11.

S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316 311

9 10|13 14

11 12 | 15 16

Fig. 4. Cell numbering layout in 2D with an example of domain decomposition. Inhomogeneous load distribution leads to unequal
domain sizes.

domain decomposition would result in a significantly better load-balance, three processes, respectively,
exchange information about their particle and cell data, so that two light-weight neighboring processes can
merge their domains and a heavy-weight process can split its domain in two halves. In the example above, if
the initially inhomogeneous system becomes homogeneous, this procedure could result in the merging of
the domains of processes III and IV and a splitting of the domain of process I. Process Il does not par-
ticipate in this rebalancing, but it should be informed that its neighbor processes have changed, of course.
In the end the layout would look like that: Process I is affiliated with cells 1-4, process II with cells 9-12,
process 111 with cells 5-8, and process IV with cells 13-16.

3.2. Causal order

A parallel approach to simulate asynchronous events has to make use of the concept of local times. Each
process handles the events in its domain and thereby increases the local simulation time. When particles
cross domain boundaries, the affected processes communicate with each other and events are inserted into
or removed from the event lists of the processes. If the event time of a newly inserted particle is less than the
local simulation time, causality is violated, because a collision of that particle with another one, which has
already been processed, could have been missed.

In general, there are two strategies to circumvent this problem: In a conservative approach only those
processes that are guaranteed not to violate causality are allowed to handle their events, the rest of the
processes has to idle. In an optimistic approach the processes do not have to idle. If causality is violated, a
complex rollback protocol which corrects the erroneous computations has to be executed. Whether a
conservative approach is efficient or not depends highly on the maximal event propagation speed.

Unfortunately, in event-driven molecular dynamics there is no upper limit for the speed of events
propagating along a chain of particles [12], even if the particles themselves are moving very slowly. In other
words, in the conservative case one process is operating and all others are idling and we are back to the
serial algorithm. So we are left with the optimistic strategy and have to undertake the task of implementing
a rollback protocol.

3.3. State saving and error recovery

When a causality error is detected, the simulation is restarted from the latest saved state. So the algo-
rithm has to make a backup copy of the simulation data periodically and has to ensure that there is no
latent causality error in this backup. The latter is guaranteed if all processes are synchronized at saving
time. This means that only those processes are allowed to continue their computations whose local sim-
ulation times have not yet reached synchronization time. Note that there are other operations, like, e.g.,
data output or load-balancing, which require periodic synchronization anyway. Besides, without syn-
chronization the local simulation times tend to drift apart, which makes causality errors very likely [19].

312 S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316

To find the optimal backup interval, we make use of an adaptive strategy. If no causality error turns up
between two successive save operations, the interval increases, otherwise it decreases. If other operations
trigger synchronization, this occasion is used for state saving, too, of course.

If a causal error occurs, all processes perform a rollback to the saved state. Furthermore a synchroni-
zation barrier is scheduled for the time when the error occurred. This prevents the same causality error from
happening again. Of course, another error could occur at an earlier point of time. Then the simulation
would perform another rollback and an earlier resynchronization would be scheduled.

For comparison the algorithm described in [12] needs two backup copies of the simulation data. So our
strategy reduces memory consumption further by a factor 3/2.

3.4. Border zone and process communication

The border zone (in [12] it is called insulation layer) consists of the cells Cyorger Whose neighbors belong to
a different process. With the domain decomposition described in Section 3.1, there is always a “monolayer”
of border zone cells at the boundary of a process area.

Each process thus maintains a list of virtual border zone cells which actually belong to its neighboring
processes and a list of virtual particles residing in the virtual border zone cells. Those virtual particles can
act as partners for real particles. But no events are calculated for them directly and they are not represented
in the event list, since they are real particles on another process. The events are already calculated there and
will be communicated to the adjacent processes.

However, it is highly inefficient for a process to communicate after every event with its neighbors. So the
parallel algorithm is designed in a stepwise manner (see Fig. 5): Each computing step lasts until the next
event in the border zone of a process, which is obtained in the following way: An event is associated with
each particle. Each event belongs to a cell (or two adjacent cells, if two colliding particles reside in different
cells or if a particle changes from one cell to another). The smallest event time in a cell is called the cell time
teen- These cell times are stored in an additional priority queue similar to the event list in Section 2.2. This
list contains the scheduled cell times for all local border zone cells and returns the minimum time
tsiep = MiN(feen(¢)) = teen(c*) Which belongs to cell ¢*.

Now, this time is used as the preliminary length of the calculation step. But firstly, the neighboring cells
of ¢*, if located on other processes are checked. If they have scheduled an even earlier event, fy, will be
shortened to that event. The communication is done in the following way: Each process sends ¢* and #..;(¢*)
as a query to the neighboring processes, which check the adjacent cells for their event times and reply with
the minimum thereof. If this answer is smaller, then it is used as #y., instead (see Fig. 5, step 1). Periodic

parallel loop:

(1) communication about border zone events — timestep

(2) timestep + min(timestep,time(synchronous tasks))

(3) for(timestep) event processing loop (see Fig. 1),
send border zone particle information

receive and process particle informations

error detection

if(error) rollback

if(global min(current time) = time(synchronous tasks))
state saving, load-balancing, data output, ...

(8) goto 1

4

(
(5
(
(

— e N

6
7

Fig. 5. Outline of the parallel algorithm.

S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316 313

tasks like data output, load-balancing or state saving, which require synchronization of the processes can
shorten f, even more (see Fig. 5, step 2).

One could think of more rigid policies to determine the length of a step, see, e.g., [12]. We have also tried
other strategies that reduce the number of rollbacks. But on the other hand, they reduce parallelism, too. A
large part of the processes are idling, the communication overhead increases, and the overall performance
goes down.

After the communication phase, parallel event processing starts and proceeds until the calculated point
of time #y, (see Fig. 5, step 3), i.e., on average O(C/Cporaer) iterations are processed. If the algorithm en-
counters an earlier border zone event which has not been anticipated, the event processing step is stopped
immediately to prevent the occurence of a causality error. But normally, the last processed event is a regular
border zone event. Then, after the last particle state update, the state information has to be communicated
to the neighboring processes.

When a process has finished its computing step, it reads the particle state messages that it has re-
ceived during this step and adapts its data structures accordingly (see Fig. 5, step 4). Real particles can
only be affected as collision partners of virtual particles. For a virtual particle there are several pos-
sibilities: A virtual particle can become a real particle by changing from one process to another, it can
remain a virtual particle, but with a different position, velocity or cell number, or finally it can emerge
on or disappear from the virtual particle list, because it enters or leaves the border zone, respectively. If
a virtual particle becomes real and newly calculated events for this particle violate causality, i.e., they
are happening before the local simulation time, an error is signaled. Moreover, the processes check the
border zone cell times and compare them with the replies to their neighboring processes. If the actual
cell time is smaller than the reply (which corresponds to the current time of the neighbor process), a
causality error has already happened with high probability, because a collision has been missed on the
neighbor process, and an error is signaled, too (see Fig. 5, step 5).

If no error is detected, the simulation continues with the next step. Otherwise a global rollback is per-
formed (see Fig. 5, step 6) and the erroneous simulation step is restarted from the latest saved state (see
Section 3.3). To prevent the reappearance of the same error, a synchronization barrier is issued at the time
when the error occurred.

Other synchronization barriers can stem from periodic tasks such as state saving, load-balancing or data
output (see Fig. 5, step 7).

speed-up

1 2 4 8 16 32 64 128
P

Fig. 6. Speed-up for different numbers P of processes in 2D. N = 5 x 10° particles, volume fraction v = 0.3, C = 1024? ~ 10° cells. The
dashed line has a slope of 0.49. The data point for one process deviates from the dashed line, because the serial algorithm has no
communication overhead. Note the logarithmic axes.

314 S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316

However, most of all parallel loops do not include synchronization of the processes, but only com-
munication between them.

3.5. Parallel performance

First of all, parallelization imposes several performance penalties on the algorithm, among them com-
munication overhead, idle time, state saving, and rollbacks after erronecous computation steps. On the other
hand, the computational costs are shared among several processes. If the latter outweighs the former,
parallelization can be considered successful. The same holds true for memory requirements. State saving
makes a copy of the whole system state and therefore doubles the memory usage. But here as well par-
allelization combines the limited resources of single processes.

Figs. 6 and 7 show that the speed-up of the parallelization (i.e., the reciprocal of the simulation
time) for fixed system size is approximately proportional to P!/2, where P is the number of processes.
Furthermore, as shown in Fig. 8, the parallelization is also scalable if the number of processes is chosen

10 |

speed-up

8 16 32 64 128
P

Fig. 7. Speed-up for different numbers P of processes in 3D. N = 2 x 10° particles, volume fraction v = 0.25, C = 1283 ~ 2 x 10° cells.
The dashed line has a slope of 0.45.

speed-up

32 64 128

Fig. 8. Speed-up for different numbers P of processes in 3D. N/P = 5 x 10* particles per process, volume fraction v = 0.2. The dashed
line has a slope of 0.50.

S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316 315

1000 - T ; ;
\\
["
— S
m "
2 + \.\‘\
o I
o ~F o T
§ 100} ~ T]
o -,
8 N
£ N
o . -
o ~
10 L s NN))) L)
1 2 4 8 16 32 64 128
P

Fig. 9. Memory requirements per process for different numbers P of processes in 3D. The points represent the measured values for
N =2 x 10°. The curves are obtained by a simple estimate ¢;N /P + ¢;(N /P)z/ 3+ ¢3N, where the first term refers to real particles, the
second term to virtual particles, and the third term to global data. The data point for one process deviates from the estimated value,
because the serial algorithm has no need for state saving.

proportional to the system size. There are deviations for small P when the effect of the parallelization
overhead is large. In addition, it has been shown in [12] that the error recovery method presented in
Section 3.3 is not scalable for P — oo. But for practical purposes, at least until P = 128, the algorithm
remains scalable.

We have tested the parallel algorithm on a computer cluster with Pentium III 650 MHz processors and a
1.28-GBit/s switched LAN. On a supercomputer with optimized communication hardware, scalability
should be even better.

For real physical applications with more than 10? collisions per particle, the maximal number of particles
typically is limited by both available memory (see Fig. 9) and computing time to about 10° particles per
process, i.e., a total number of particles of about 108,

4. Summary

We have demonstrated how to parallelize event-driven molecular dynamics successfully. Our algorithm
is based on some ideas from [12], i.e., we have used an optimistic parallelization approach which performs a
rollback protocol if a causality error occurs. But the algorithm is enhanced in several ways:

Firstly, we have implemented dynamic load-balancing, which makes simulation of inhomogeneous
systems possible. Computing time is further reduced by an adaptive linked-cell structure which determines
the optimal cell sizes.

Secondly, we have transferred the shared memory approach of [12] to distributed memory architectures
as well. The parallelization has been realized with MPI. In order to minimize idle time, we have made use of
asynchronous communication, i.e., send and receive actions are decoupled from each other. In addition, the
amount of communication is limited to a minimum: The event processing can continue steadily until a
border zone event takes place on the local process or is expected to take place on a neighboring process.
Only then the calculation has to be interrupted in order to communicate with the neigboring processes. So,
even on a cluster with rather poor communication hardware, parallelization yields a speed-up proportional
to P'/? — at least up to P = 128 parallel processes.

316 S. Miller, S. Luding | Journal of Computational Physics 193 (2003) 306-316

Third, we have optimized the data structure of the algorithm. With event-driven molecular dynamics in-
sufficient memory is often a more serious problem than computing time. In total our optimizations reduce
memory requirements to one-third as compared to the method proposed in [12].

This enabled us to perform simulations of real physical problems with up to 10% particles.

References

[1] B.D. Lubachevsky, Fast simulation of multicomponent dynamic systems, Bell Labs. Tech. J. 5 (2) (2000) 134-156.
[2] B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (2) (1959) 459-466.
[3] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.
[4] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995.
[5] B.D. Lubachevsky, How to simulate billiards and similar systems, J. Comput. Phys. 94 (1991) 255-283.
[6] S. Luding, H.J. Herrmann, Cluster growth in freely cooling granular media, Chaos 9 (3) (1999) 673-681.
[7]1 S. Luding, From microscopic simulations to macroscopic material behavior, Comput. Phys. Commun. 147 (2002) 134-140.
[8] S.W. Smith, C.K. Hall, B.D. Freeman, Molecular dynamics for polymeric fluids using discontinuous potentials, J. Comput. Phys.
134 (1997) 16-30.
[9] S. Miller, S. Luding, G. Gompper, Tethered membranes revisited (2003), in preparation.
[10] N.V. Dokholyan, S.V. Buldyrev, H.E. Stanley, E.I. Shakhnovich, Molecular dynamics studies of folding of a protein-like model,
Fold. Des. 3 (1998) 577-587.
[11] D.M. Nicol, Mapping a battlefield simulation onto a message-passing parallel architecture, in: SCS Multiconference, Simulation
Series, vol. 19, SCS, 1988, pp. 141-146.
[12] B.D. Lubachevsky, Simulating billiards: serially and in parallel, Int. J. Comput. Simul. 2 (1992) 372-411.
[13] M. Marin, Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism, Comput. Phys. Commun. 102
(1997) 81-96.
[14] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1968.
[15] M. Marin, P. Cordero, An empirical assessment of priority queues in event-driven molecular dynamics, Comput. Phys. Commun.
92 (1995) 214-224.
16] S. Luding, Global equation of state of two-dimensional hard sphere systems, Phys. Rev. E 63 (2001) 042201-042204.
17] S. Luding, Liquid-solid transition in bi-disperse granulates, Adv. Complex Syst. 4 (4) (2002) 379-388.
18] S. Luding, Structures and non-equilibrium dynamics in granular media, C. R. Acad. Sci. 3 (2002) 153-161.
19] G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, Z. Toroczkai, Going through rough times: from non-equilibrium surface
growth to algorithmic scalability, Mater. Res. Soc. Symp. Proc. Ser. 700 (2001) 297-308.

[
[
[
[

	Event-driven molecular dynamics in parallel
	Introduction
	Event-driven molecular dynamics
	Outline
	Data organization
	State update
	Event calculation and linked cell structure
	Optimal cell numbers

	The parallel algorithm
	Domain decomposition and dynamic load-balancing
	Causal order
	State saving and error recovery
	Border zone and process communication
	Parallel performance

	Summary
	References

